
Siham Zoubit et.al. Int. Journal of Engineering Precious Research and Application

www.ijpera.com

ISSN : 2456-2734, Vol. 1, Issue 2, Sep.2016, pp.23-26

www.ijpera.com 23|P a g e

Comparative Study between Karatsuba Algorithm and FFT

Algorithm

Siham Zoubir
1
, Abderrahim Tragha

2

1,2

(Department of Modeling and information technology (TIM) / University Hassan II Mohammedia, Faculty of

sciences Ben M’sik, Casablanca)

ABSTRACT
The product of polynomials and integers is an elementary operation, which intervenes in an impressive number

of algorithms of the formal calculation. The efficiency of these algorithms is bases on product. To multiply two

polynomials of n degree that has coefficients in a ring A, the classic method requires O(n²) operations in A.

Also, the school algorithm of multiplication of two integers with n number required a number of binary

operations there O(n²).We present in this article several algorithms of fast multiplication, which is Karatsuba

algorithm with complexity O(n1,59), and Fast Fourier transform, with the complexity is essentially linear to n.

The problems land on this article concern the arithmetical complexity of the multiplication of polynomials with

a variable and the binary complexity of the Multiplication of integers.

Keywords: multiplication, algorithm, Karatsuba, Fast Fourier Transform (FFT)

I. INTRODUCTION
The hidden constants in O (·) are

determining for the practical efficiency of such

algorithms. Let us speak first about the polynomial

case, for example when A is a finished body by

reasonable size (typically, elements of which are

represent on some machine words).

In the best current setting-up (magma,

NTL):

 The algorithm of Karatsuba beats the naïve

algorithm for about degrees 20;

 The methods have base of FFT in O (n log n)

win for degrees of the order of 100, but cannot

be utilizes for arbitrarily big degrees (comes a

moment or we are lacking roots of the

unity);FFT's algorithm in O (n log n log log n)

is used for degrees of the order of some tens or

hundreds thousands. Certain problems, in

cryptology or in theory numbers, require to

treat polynomials of degree of the order of 100

000, Sizes that need obligatory the fast

algorithms.

 The setting-up of the fast algorithms for

integers is delicate because of the restraints.

In the best current setting-up (magma,

GMP):

 The algorithm of Karatsuba beats the naïve

algorithm for numbers of the order of 100

binary numbers;

 The methods have base of FFT (Schonhage-

Strassen) win for numbers 10 000 binary

numbers.

Again, problems come from cryptology or

from number theory that need to treat numbers

of colossal size (of the order of 100 000 000

numbers; needs 10 Mb to store such a

number). This justifies amply the efforts of

setting-up the fast algorithms.

II. ALGORITHM OF KARATSUBA
1. Presentation of the algorithm

A first refinement of the naïve algorithm

bases on the following remark: it is possible to win

a multiplication for the product of the polynomials

of degree 1.

Are indeed has to multiply polynomials

 F = f0 + f1X et G = g0 + g1X

The product H = FG is written

 H = f0g0 + (f0g1 + f1g0)X + f1g1X²

Make all 4 products f0g0, f0g1, f1g0, f1g1

Corresponds to the quadratic algorithm but we can

do better by noticing that the coefficient of X is

written

 f0g1 + f1g0 = (f0 + f1)(g0 + g1) − f0g0 − f1g1

This writing is leads to an algorithm

which makes in total 3 multiplications and 4

additions. We lost some additions compared to the

naïve algorithm, but the earnings of a

multiplication are going to be transformed into

earnings in the exhibitor of the algorithm, by

recursive application.

Indeed let us cross in the general case any

degrees. Inspire by the previous observation, we

are going to split F and G into two.

We thus suppose that F and G are of

degree in most n - 1, and that the integer n is even,

n = 2k. We pose then:

 F = F
(0)

+ F
(1)

X
k
, G = G

(0)
 + G

(1)
X

k

RESEARCH ARTICLE OPEN ACCESS

http://context.reverso.net/traduction/anglais-francais/fast+fourier+transform
http://context.reverso.net/traduction/anglais-francais/fast+fourier+transform

Siham Zoubit et.al. Int. Journal of Engineering Precious Research and Application

www.ijpera.com

ISSN : 2456-2734, Vol. 1, Issue 2, Sep.2016, pp.23-26

www.ijpera.com 24|P a g e

F(0), F(1),G(0),G(1) having degrees in most k − 1.

the product H = FG is writing

H = F
(0)

G
(0)

 + (F
(0)

G
(1)

 + F
(1)

G
(0)

) X
k
 + F

(1)
G

(1)
X

2k

To write algorithm, we suppose that n is a

power of 2 to be able to make all the appeals

recursive which we wish. we obtain then:

Algorithm of KARATSUBA

Input: F,G of degree in most n - 1, n being a

power of 2.Output : H = FG.

1. If n = 1, return FG.

2. Calculate A1 = F
(0)

G
(0)

 et A2 = F
(1)

G
(1)

Recursively.

3. Calculate A3 = F
(0)

 + F
(1)

 et A4 = G
(0)

 + G
(1)

.

4. Calculate A5 = A3A4 Recursively.

5. Calculate A6 = A5 − A1 et A7 = A6 − A2.

6. Return A1 + A7X
n/2

+ A2X
n
.

2. Analysis of the algorithm KARATSUBA

By induction on n = max ([log2 a]; [log2 b]) + 1:

- If n = 1 then, we make only one multiplication,

thus the algorithm is end.

- Let us suppose that for all n < n0, the

algorithm KARATSUBA (a; b) ends, then for

all a and b with n0 = max ([log2 a];

[log2 b]) + 1, KARATSUBA (a; b) also ends

because he calls recursively three copies of

KARATSUBA on smaller authorities (which

by induction hypothese end).

By induction on k = max ([log2 a]; [log2 b]) + 1:

- If k = 1 then, KARATSUBA (a; b) return ab.

- Let us suppose that for all k < n0, the

algorithm KARATSUBA (a; b) return ab, then

for all a and b with n0 = max ([log2 a]; [log2 b])

+ 1:

KARATSUBA (a; b) = y x 2
2k

 + (x +y - sgn (a1-

A0) sgn (b1- B0) z) x 2
k
 + x;

Who costs ab because by recurrence x = a0b0, =

a1b1 and z = (|a1- A0) (|b1- B0)).

Analysis of the Complexity in number of

elementary multiplications :

Let us note T (n) the number of

necessary elementary multiplications to multiply

two numbers of n numbers

The principle of Divide to rule allows to

give the formula of recurrence for T :

 T(1) = 1 et T(n) = 3T(n=2):

We deduce T(n) = (-) (n
log2 3

) : log2 3 = ln(3)/ln(2)

≈ 1:585; witch is more better than n² of naive

multiplication.

III. ALGORITHM OF FAST FOURIER

TRANSFORM
1. Presentation

The methods with Fast Fourier transform

are what we know to do best to multiply

polynomials.

To simplify the presentation, we suppose here that

we try to multiply polynomials F and G in A [X],

strictly lower degrees to n/2 (or more generally

such as deg FG < n).

We make (temporarily) the hypothesis that

the ring A is of cardinal at least n.

We give ourselves different points a0,......an- 1 in A.

The principle of the multiplication by

processing of Fast Fourier is as following:

1. Evaluation. We calculate the values:

Ev(F) = (F(a0), . . . , F(an−1)) ; Ev(G) = (G(a0), . . .

,G(an−1))

2. Produce point to point

Ev(F), Ev(G) → Ev(FG) = (FG(a0), . . . , FG(an−1))

3. Interpolation

Ev(FG) → FG.

This operation returns to find the

coefficients of FG from his values in a0.......an-1 (has

to suppose that this operation of interpolation is

possible, see below).

In matrix terms, the operation F → Ev (F)

is linear and his matrix (for polynomials F of

degree in most n-1, in the monomial base{1, X....

X
n-1

}) is the matrix of Vandermonde.

2. Programming

We give ourselves the prime number P as

well as the number N which is a power of 2 and

which divides N - 1. We also determine a generator

g of the group Cyclic U (p), what allows to find a

primitive root N
ème

 of the unity in U (p), or W.

Roots N
ème

 of the unity are the successive powers

of W, returned modulo P. They are obtained by the

following function, which records them in the

board W [N]:

void rootnemesof1(int ww) /* in the principal

program, we take ww = W */

{ int i;

w[0]=1; /* the board w[] should be declared in

global */

for(i=1;i<N;i++) { w[i]=ww*w[i-1]; while

(w[i]>=P) w[i]-=P; }

}

the gives coefficients a[] of polynomial P are put

in the order of the bits inverted and placed in Board

t[], as we do previously, this board t[] is declared in

global like :

void bitreversedeaverst(int aa[]) /* this function is

applied in initial polynomial P */

{ int i,j;

for(i=0;i<N;i++) { j=rev(i); t[j]=aa[i];} /* Take

back the function rev () treated previously */

}

Siham Zoubit et.al. Int. Journal of Engineering Precious Research and Application

www.ijpera.com

ISSN : 2456-2734, Vol. 1, Issue 2, Sep.2016, pp.23-26

www.ijpera.com 25|P a g e

These two functions are going to be

integrated into the function fft () which takes as

variables the board of Coefficients a[] of the

polynomial the transformed of Fast Fourier which

we want to have, as well as Primitive root W used

for it. It is about a program similar to that of the

transformed of Fourier with complex numbers,

except that in this case, it is about integers Much

simpler, than we content with returning modulo P

during the calculations. The transformed of Fourier

of the polynomial is placed in the end in the board t

[] the contents of which were transformed during

execution of the function fft ().

void fft(int aa[],int ww)

{ int j,k,s,n,u,v;

rrootnemesof1(ww);

S=(log(N+0.0001)/log(2.)); /* S is declqred in

global */

bitreversedeaverst(aa);

n=2;

for(s=1;s<=S;s++)

{ for(j=0;j<n/2;j++) for(k=j;k<N; k+=n)

{ u=t[k];

v=w[N/n*j]*t[k+n/2]; while(v>=P) v-=P;

t[k]=u+v; if (t[k]>=P) t[k]-=P;

t[k+n/2]=u-v; if (t[k+n/2]>=P) t[k+n/2]-=P; if

(t[k+n/2]<0) t[k+n/2]+=P;

}

n=2*n;

}

}

the principal program include an input of

polynomial P with their coefficients a[]. than the

fft() function is called, and the result is posted in

the board t[], or if we want in board ffta[].

for(i=0;i<N;i++) a[i]=rand()%(N-1)+1; /* example

of polynomial */

printf("\n Polynomial a avec ses %d coefficients

:\n",N); for(i=0;i<N;i++) printf(" %d ",a[i]);

fft(a,W);

printf("\n Transformed of Fourier de a\n");

for(i=0;i<N;i++) { ffta[i]=t[i]; printf(" %d ",

ffta[i]);}

IV. CONCLUSION
The Russian mathematician A.N.

Kolmogorov had guess at the beginning of 1960s

that it would be impossible to multiply two integers

of n numbers in a binary cost under-quadratic . In

1962 this guess was set aside by Karatsuba and

Ofman. A generalization of the algorithm was

proposed a few years later by Toom and CoOK.

The algorithm of Toom-Cook has a binary

complexity of O (n 32
√log n

) to multiply two integers

of binary size n; This result can be matter in the

polynomial world.

He founding article of Cooley and Tukey

is doubtless one furthermore quote in computing.

The article constitutes a good reference for the

reader avid to get acquainted with the myriad of

techniques of type FFT. An important overhang

was in the discovery of Schonhage and Strassen of

the equivalent result for the multiplication of

integers. For a long time, we believed that this

algorithm could not present that a purely theoretical

interest.To date, most of the non-specialized

software of formal calculation have a fast

multiplication of integers: Maple and Mathematical

uses the library GMP, Magma has its own setting-

up.

ACKNOWLEDGEMENTS
FFT: Transformed of Fast Fourier

REFERENCES

[1]. Karatsuba A. A. The complexity of

computations // Proc. Steklov Inst. Math.,

211, 169–183 (1995); translation from

Trudy Mat. Inst. Steklova, 211, 186–202

(1995)

[2]. Richard Brent, Paul Zimmerman, Modern

Computer Algebra, Cambridge University

Press, 2010.

[3]. Nussbaumer (Henri J.). – Fast polynomial

transform algorithms for digital

convolution. Institute of Electrical and

Electronics Engineers. Transactions on

Acoustics, Speech, and Signal Processing,

vol. 28, n°2, 1980, pp. 205–215.

[4]. Cantor (D. G.) and Kaltofen (E.). – On

fast multiplication of polynomials over

arbitrary algebras. Acta Informatica, vol.

28, n°7, 1991, pp. 693–701.

[5]. van der Hoeven (Joris). – The truncated

Fourier transform and applications. In

ISSAC 2004, pp. 290–296. – ACM, New

York, 2004.

[6]. Bernstein (D. J.). – Multidigit

multiplication for mathematicians. –

Preprint, available from

http://cr.yp.to/papers.html.

[7]. G. BAUDOIN et J.-F. BERCHER -

TRANSFORMÉE DE FOURIER

DISCRÈTE - École Supérieure

d’Ingénieurs en Électrotechnique et

Électronique. Novembre 2001 – version

0.1.

[8]. Joseph COHEN - Laboratoire LSD,

Institut IMAG, Université J. Fourier, B.P .

n° 53X, 38401 GRENOBLE CEDEX,

France .

[9]. Jacques MAX - CENG-LETI, BP n° 85X,

38041 GRENOBLE CEDEX, France.

http://context.reverso.net/traduction/anglais-francais/quadratic
http://context.reverso.net/traduction/anglais-francais/set+aside

Siham Zoubit et.al. Int. Journal of Engineering Precious Research and Application

www.ijpera.com

ISSN : 2456-2734, Vol. 1, Issue 2, Sep.2016, pp.23-26

www.ijpera.com 26|P a g e

[10]. Joseph COHEN - Laboratoire LSD,

Institut IMAG, Université J. Fourier, B.P .

n° 53X, 38401 GRENOBLE CEDEX,

France . Jacques MAX CENG-LETI, BP

n° 85X, 38041 GRENOBLE CEDEX,

France .

