
Siham Zoubit et.al. Int. Journal of Engineering Precious Research and Application                  

www.ijpera.com 

ISSN : 2456-2734, Vol. 1, Issue 2, Sep.2016, pp.23-26 

 

 
www.ijpera.com                                                                                                                              23|P a g e  

 

 

Comparative Study between Karatsuba Algorithm and FFT 

Algorithm  
 

Siham Zoubir
1
, Abderrahim Tragha

2 
 

 
1,2

(Department of Modeling and information technology (TIM) / University Hassan II Mohammedia, Faculty of 

sciences Ben M’sik, Casablanca)  

 

ABSTRACT 
The product of polynomials and integers is an elementary operation, which intervenes in an impressive number 

of algorithms of the formal calculation. The efficiency of these algorithms is bases on product. To multiply two 

polynomials of n degree that has coefficients in a ring A, the classic method requires O(n²) operations in A. 

Also, the school algorithm of multiplication of two integers with n number required a number of binary 

operations there O(n²).We present in this article several algorithms of fast multiplication, which is Karatsuba 

algorithm with complexity O( n1,59 ), and Fast Fourier transform, with the complexity is essentially linear to n. 

The problems land on this article concern the arithmetical complexity of the multiplication of polynomials with 

a variable and the binary complexity of the Multiplication of integers. 
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I. INTRODUCTION 
The hidden constants in O (·) are 

determining for the practical efficiency of such 

algorithms. Let us speak first about the polynomial 

case, for example when A is a finished body by 

reasonable size (typically, elements of which are 

represent on some machine words). 

In the best current setting-up (magma, 

NTL): 

 The algorithm of Karatsuba beats the naïve 

algorithm for about degrees 20; 

 The methods have base of FFT in O (n log n) 

win for degrees of the order of 100, but cannot 

be utilizes for arbitrarily big degrees (comes a 

moment or we are lacking roots of the 

unity);FFT's algorithm in O (n log n log log n) 

is used for degrees of the order of some tens or 

hundreds thousands. Certain problems, in 

cryptology or in theory numbers, require to 

treat polynomials of degree of the order of 100 

000, Sizes that need obligatory the fast 

algorithms. 

 The setting-up of the fast algorithms for 

integers is delicate because of the restraints.  

 

In the best current setting-up (magma, 

GMP): 

 The algorithm of Karatsuba beats the naïve 

algorithm for numbers of the order of 100 

binary numbers; 

  The methods have base of FFT ( Schonhage-

Strassen) win for numbers 10 000 binary 

numbers. 

Again, problems come from cryptology or 

from number theory that need to treat numbers 

of colossal size (of the order of 100 000 000 

numbers; needs 10 Mb to store such a 

number). This justifies amply the efforts of 

setting-up the fast algorithms. 

 

II. ALGORITHM OF KARATSUBA 
1. Presentation of the algorithm  

A first refinement of the naïve algorithm 

bases on the following remark: it is possible to win 

a multiplication for the product of the polynomials 

of degree 1. 

Are indeed has to multiply polynomials 

                   F = f0 + f1X et G = g0 + g1X 

The product H = FG is written  

                   H = f0g0 + (f0g1 + f1g0)X + f1g1X² 

Make all 4 products f0g0, f0g1, f1g0, f1g1 

Corresponds to the quadratic algorithm but we can 

do better by noticing that the coefficient of X is 

written  

       f0g1 + f1g0 = (f0 + f1)(g0 + g1) − f0g0 − f1g1 

This writing is leads to an algorithm 

which makes in total 3 multiplications and 4 

additions. We lost some additions compared to the 

naïve algorithm, but the earnings of a 

multiplication are going to be transformed into 

earnings in the exhibitor of the algorithm, by 

recursive application. 

Indeed let us cross in the general case any 

degrees. Inspire by the previous observation, we 

are going to split F and G into two.  

We thus suppose that F and G are of 

degree in most n - 1, and that the integer n is even, 

n = 2k. We pose then:  

         F = F
(0) 

+ F
(1) 

X
k
, G = G

(0)
 + G

(1) 
X

k
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F(0), F(1),G(0),G(1) having degrees in most k − 1. 

the product H = FG is writing   

H = F
(0)

G
(0)

 + (F
(0)

G
(1)

 + F
(1)

G
(0)

) X
k
 + F

(1)
G

(1)
X

2k
 

To write algorithm, we suppose that n is a 

power of 2 to be able to make all the appeals 

recursive which we wish. we obtain then: 

 

Algorithm of KARATSUBA 

Input: F,G of degree in most n - 1, n being a 

power of 2.Output : H = FG. 

1. If  n = 1, return FG. 

2. Calculate A1 = F
(0)

G
(0)

 et A2 = F
(1)

G
(1)

 

Recursively. 

3. Calculate A3 = F
(0)

 + F
(1)

 et A4 = G
(0)

 + G
(1)

. 

4. Calculate A5 = A3A4 Recursively. 

5. Calculate A6 = A5 − A1 et A7 = A6 − A2. 

6. Return  A1 + A7X
n/2 

+ A2X
n
. 

 

2.  Analysis of the algorithm KARATSUBA 

By induction on n = max ([log2 a]; [log2 b]) + 1:  

- If n = 1 then, we make only one multiplication, 

thus the algorithm is end. 

- Let us suppose that for all n < n0, the 

algorithm KARATSUBA (a; b) ends, then for 

all a and b with             n0 = max ([log2 a]; 

[log2 b]) + 1, KARATSUBA (a; b) also ends 

because he calls recursively three copies of 

KARATSUBA on smaller authorities (which 

by induction hypothese end). 

 

By induction on k = max ([log2 a]; [log2 b]) + 1: 

- If  k = 1 then, KARATSUBA (a; b) return ab. 

- Let us suppose that for all k < n0, the 

algorithm KARATSUBA (a; b) return ab, then 

for all a and b with n0 = max ([log2 a]; [log2 b]) 

+ 1:  

KARATSUBA (a; b) = y x 2
2k

 + (x +y - sgn (a1- 

A0) sgn (b1- B0) z) x 2
k
 + x; 

Who costs ab because by recurrence x = a0b0, = 

a1b1 and z = ( |a1- A0) ( |b1- B0)). 

Analysis of the Complexity in number of 

elementary multiplications : 

Let us note T ( n ) the number of 

necessary elementary multiplications to multiply 

two numbers of n numbers  

The principle of Divide to rule allows to 

give the formula of recurrence for T : 

         T(1) = 1 et T(n) = 3T(n=2): 

We deduce  T(n) = (-) (n
log2 3

) :  log2 3 = ln(3)/ln(2) 

≈ 1:585; witch is more better than n² of naive 

multiplication. 

 

III. ALGORITHM OF FAST FOURIER 

TRANSFORM 
1. Presentation  

The methods with Fast Fourier transform 

are what we know to do best to multiply 

polynomials.  

To simplify the presentation, we suppose here that 

we try to multiply polynomials F and G in A [X], 

strictly lower degrees to n/2 (or more generally 

such as     deg FG < n). 

We make (temporarily) the hypothesis that 

the ring A is of cardinal at least n. 

We give ourselves different points a0,......an- 1 in A.  

The principle of the multiplication by 

processing of Fast Fourier is as following: 

 

1. Evaluation. We calculate the values: 

Ev(F) = (F(a0), . . . , F(an−1)) ; Ev(G) = (G(a0), . . . 

,G(an−1))  

 

2. Produce point to point 

Ev(F), Ev(G) → Ev(FG) = (FG(a0), . . . , FG(an−1))  

 

3. Interpolation 

Ev(FG) → FG. 

This operation returns to find the 

coefficients of FG from his values in a0.......an-1 (has 

to suppose that this operation of interpolation is 

possible, see below). 

In matrix terms, the operation F → Ev (F) 

is linear and his matrix (for polynomials F of 

degree in most n-1, in the monomial base{1, X.... 

X
n-1

}) is the matrix of Vandermonde. 

 

2. Programming   

We give ourselves the prime number P as 

well as the number N which is a power of 2 and 

which divides N - 1. We also determine a generator 

g of the group Cyclic U ( p ), what allows to find a 

primitive root N
ème

 of the unity in U ( p ), or W. 

Roots N
ème

 of the unity are the successive powers 

of W, returned modulo P. They are obtained by the 

following function, which records them in the 

board W [ N ]: 

void rootnemesof1(int ww) /* in the principal 

program, we take ww = W */ 

{ int i; 

w[0]=1; /* the board w[] should be declared in 

global */ 

for(i=1;i<N;i++) { w[i]=ww*w[i-1]; while 

(w[i]>=P) w[i]-=P; } 

} 

the gives coefficients a[] of polynomial  P are put 

in the order of the bits inverted and placed in Board 

t[], as we do previously, this board t[] is declared in 

global like : 

void bitreversedeaverst(int aa[]) /* this function is 

applied in initial polynomial  P */ 

{ int i,j; 

for(i=0;i<N;i++) { j=rev(i); t[j]=aa[i];} /* Take 

back the function  rev () treated previously */ 

} 
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These two functions are going to be 

integrated into the function fft () which takes as 

variables the board of  Coefficients a[] of the 

polynomial the transformed of Fast Fourier which 

we want to have, as well as Primitive root W used 

for it. It is about a program similar to that of the 

transformed of Fourier with complex numbers, 

except that in this case, it is about integers Much 

simpler, than we content with returning modulo P 

during the calculations. The transformed of Fourier 

of the polynomial is placed in the end in the board t 

[] the contents of which were transformed during 

execution of the function fft (). 

void fft(int aa[],int ww) 

{ int j,k,s,n,u,v; 

rrootnemesof1(ww); 

S=(log(N+0.0001)/log(2.)); /* S is declqred in 

global */ 

bitreversedeaverst(aa); 

n=2; 

for(s=1;s<=S;s++) 

{ for(j=0;j<n/2;j++) for(k=j;k<N; k+=n) 

{ u=t[k]; 

v=w[N/n*j]*t[k+n/2]; while(v>=P) v-=P; 

t[k]=u+v; if (t[k]>=P) t[k]-=P; 

t[k+n/2]=u-v; if (t[k+n/2]>=P) t[k+n/2]-=P; if 

(t[k+n/2]<0) t[k+n/2]+=P; 

} 

n=2*n; 

} 

} 

the principal program include an input of 

polynomial P with their coefficients a[]. than the 

fft() function is called, and the result is posted in 

the board t[], or if we want in board ffta[]. 

 

for(i=0;i<N;i++) a[i]=rand()%(N-1)+1; /* example 

of polynomial */ 

printf("\n Polynomial a avec ses %d coefficients 

:\n",N); for(i=0;i<N;i++) printf(" %d ",a[i]); 

fft(a,W); 

printf("\n Transformed of Fourier de a\n"); 

for(i=0;i<N;i++) { ffta[i]=t[i]; printf(" %d ", 

ffta[i]);} 

 

IV. CONCLUSION 
The Russian mathematician A.N. 

Kolmogorov had guess at the beginning of 1960s 

that it would be impossible to multiply two integers 

of n numbers in a binary cost under-quadratic . In 

1962 this guess was  set aside by Karatsuba and 

Ofman. A generalization of the algorithm was 

proposed  a few years later by Toom and CoOK. 

The algorithm of Toom-Cook has a binary 

complexity of O (n 32
√log n

) to multiply two integers 

of binary size  n; This result can be matter in the 

polynomial world. 

He founding article of Cooley and Tukey 

is doubtless one furthermore quote in computing. 

The article constitutes a good reference for the 

reader avid to get acquainted with the myriad of 

techniques of type FFT. An important overhang 

was in the discovery of Schonhage and Strassen of 

the equivalent result for the multiplication of 

integers. For a long time, we believed that this 

algorithm could not present that a purely theoretical 

interest.To date, most of the non-specialized 

software of formal calculation have a fast 

multiplication of integers: Maple and Mathematical 

uses the library GMP, Magma has its own setting-

up. 
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