
Prashant Singh et al.,Int. Journal of Precious Engineering Research and Applications              

www.ijpera.com 

ISSN : 2456-2734, Vol.1 , Issue 1 August 2016, pp.18-35 

 www.ijpera.com                                                                                                                           18|P a g e  

 

 

Literature Review of q-Function 
 

Prashant Singh
1
, Pramod Kumar Mishra

2 
 

1
(Department of Computer Science, Institute of Science, Banaras Hindu University)  

2
(Department of Computer Science, Institute of Science, Banaras Hindu University)  

 

ABSTRACT 
This paper is a literature review of q-function or q method. It covers history, background and future applications 

of q function. It also contains year wise description of work performed by mathematicians on q function. 
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I. INTRODUCTION 
C. F. Gauss has initiated the theory of  

hypergeometric series in 1812 and it has been area 

of research for last two centuries. Numerical 

Methods are oldest tools of solving mathematical 

and engineering problems. Numerical computations 

play an imperative role in solving real time and real 

life problems of engineering, mathematics and 

physics. It is an approach for solving complex 

mathematical problems using arithmetic operations. 

This approach involves formulation of 

mathematical models of physical situations that can 

be solved with mathematical operations. 

Applications of computer oriented numerical 

methods have become an integral part of the life of 

all the modern scientists. The advent of powerful 

ultra smart computers has tremendously increased 

the power, speed and flexibility of revised methods 

of numerical computing.  

Increased power of computer hardware 

has tremendously affected the approach of 

numerical computing in several ways. Many 

numerical methods are based on the idea of an 

iterative process which involves generation of a 

sequence of approximations with the belief that the 

process will converge to required solution. 

Approximations and errors are integral part of 

human life and they are omnipresent and 

unavoidable. Data conversion and round off errors 

cannot be avoided but human errors can be 

eliminated. Getting perfect solution is main motto 

of numerical methods but perfection is what we 

strive for, it is rarely achieved in practice due to 

wide variety of factors. Reducing error and 

minimizing number of iterations in numerical 

method problems is primary concern.  

q Method is an extension of classical 

method by addition of an extra parameter .When q 

tends to unity either from right or left, q function 

tends to classical function or ordinary function. The 

theory of hypergeometric function in one or more 

variables constitutes a natural alliance of much of 

material discussed by mathematicians from past 

three centuries till today. Results on q-

differentiations, q-integrations, q- transformations 

and identities, q-analogue of certain classical 

functions and their applications are available in the 

literature of q function.  q-analogue finds use in a 

number of areas, including the multi-fractal 

measures, study of fractals, expressions for the 

entropy of chaotic dynamical systems, different 

integral transforms, differential equations and most 

effective in boundary value problems and 

difference equations. It is not like these topics have 

only been considered by obscure mathematicians of 

history and it has been a topic of interest to many 

of the greats of all time, such as Euler, Jackson, 

Gauss, Jacobi and Ramanujan. 

The naturalist, the astronomers, the 

biologists and the economists all made use of 

numerical methods. Scope of q function in 

numerical analysis pioneered its use in making 

predictions about eclipses has equally utilized them 

in its generalization. For an illustration in calculus 

of variation, weather forecasting, barometrical 

pressure, force of wind and in genetic coding q 

method can be used. Due to diverse application in 

number of areas of statistics, mathematical physics, 

chemistry and other fields, great deals of attention 

have been given to the classical hyper geometric 

function. Many special functions are also in the 

form of hypergeometric function. 

There is always the possibility of an 

unlimited number of q analogues of the most of the 

special function. Most of the initial examples of q 

hypergeometric functions were collected by E. 

Heine. In last few years Srinivasa Ramanujan was 

working on applicability of q function in various 

problems, which is still a mystery. The topic of q-

special functions is ubiquitous in mathematical 

Physics and Statistical Mathematics; in particular, 

they play a basic role in statistical mechanics. 

Certain q-series identities have been helpful in 

proving many combinatorial identities. It is known 

that Lie algebras play a unique role in the 

characterization of special functions, and similarly, 

RESEARCH ARTICLE                    OPEN ACCESS 



Prashant Singh et al.,Int. Journal of Precious Engineering Research and Applications              

www.ijpera.com 

ISSN : 2456-2734, Vol.1 , Issue 1 August 2016, pp.18-35 

 www.ijpera.com                                                                                                                           19|P a g e  

quantum groups play the analogous role for q-

special functions. Their significance and wide 

varieties of applications should not be understated. 

A number of theorems exist whereby special cases 

of generalized hypergeometric series can be 

summed up in closed form. Use of q function 

opened the path for the applications to many other 

fields like crystallography, cosmology, solid state, 

heat, quantum mechanics and numerical 

mathematics. 

Some of the basic analogues of various summation 

theorems are as follows. 

1. q Analogue of well poised summation 

theorem. 

2. q Analogue of Dougall’s theorem. 

3. q Analogue of Saalschutz’s theorem. 

4. q Analogue of Dixon theorem. 

5. q Analogue of Gauss’s second theorem. 

 

In addition to Jackson, various authors for 

e.g. Rogers, Bailey, Andrews and Watson derived 

identities of q hypergeometric series. This list must 

include the great Indian mathematician S. 

Ramanujan who gave a number of formulae. Slater 

undertook systematic investigations of q 

hypergeometric identities. One of the 

mathematicians in the field of q hypergeometric 

function who made a significant contribution in the 

literature of q method since 1976 is G. E. Andrews. 

He worked both the analytical point of view, an 

exemplified by the selection of Slater’s output. 

 

II. HISTORY AND LITERATURE 

SURVEY 
C.F. Gauss started the theory of q 

hypergeometric series and worked on it for more 

than five decades. E. Heine extended this theory 

and worked on it for more than three decades. Later 

on F.H. Jackson [Jackson (1904)], [Exton (1983)] 

in the beginning of twentieth century started 

working on q function and proposed q-

differentiation and q-integration and worked on 

transformation of q-series and generalized function 

of Legendre and Bessel.  G.E. Andrews [Andrews 

et al. (1985)] contributed a lot on q theory and 

worked on q-mock theta function, problems and 

prospects on basic hypergeometric series, q-

analogue of Kummer’s Theorem and on Lost 

Notebook of Ramanujan. G.E. Andrew with R. 

Askey [Andrews et al. (1985)] worked on q 

extension of Beta Function. J. Dougall [Dougall 

(1907)] worked on Vondermonde’s Theorem. H. 

Exton [Exton (2003)] worked a lot on basic 

hypergeometric function and its applications. M. 

Rahman with Nassarallah worked [Rahman et al. 

(1985)], [Rahman et al. (1986)] on q-Appells 

Function, q-Wilson polynomial, q-Projection 

Formulas. He also worked on reproducing Kample 

and bilinear sums for q-Racatanad and q-Wilson 

polynomial. I. Gessel with D. Stanton [Gessel et al. 

(1986)] worked on family of q-Lagrange inversion 

formulas. D. Stanton [Ismail (2003)] worked on 

partition of q series. Theories in the nineteenth 

century included those of Ernst Kummer [Jackson 

(1904)], [Exton (1983)] and the fundamental 

characterization by Riemann of the F-function by 

means of the differential equation. Riemann 

showed that the second-order differential equation 

for F, examined in the complex plane, could be 

characterized (on the Riemann sphere) by its 

three regular singularities, that effectively the entire 

algorithmic side of the theory was a outcome of 

basic facts and the use of Möbius 

transformations as a symmetry group. L. Carlitz 

worked on q inverse relations. R. Y. Denis [Denis 

(1987)] worked on certain expansion of basic 

hypergeometric function and q-fractional derivative 

and also he published paper   on continued fraction. 

Subsequently the hypergeometric series 

were generalised to numerous variables, for 

example by Paul Emile Appell, but an analogous 

general theory took long to emerge. Many 

identities were found, some were quite amazing.  

Another generalization, the elliptic hypergeometric 

series are those series where the ratio of terms is 

an elliptic-function (doubly periodic meromorphic 

function) of n. 

During the twentieth century this was a 

prolific area of combinatorial mathematics, with 

many connections to other fields. There are a 

number of new definitions of hypergeometric 

series, by Aomoto, Israel Gelfand and others; and 

applications for example to the combinatorics of 

arranging a number of hyper planes in complex N-

space. N.J. Fine [Fine et al. (1988)] also worked on 

applications of basic hypergeometric function.  

B.Gorden [Gorden et al. (2000)] worked on mock 

theta function. I. Gessel [Gessel et al.(1986)] 

worked on q-Lagrange inversion formulas. M.D. 

Herschhorn [Herschhorn (1974)] worked on 

partition theorem of Rogers-Ramanujan type. 

q Series can be developed on Riemannian 

symmetric spaces and semi-simple Lie groups. 

Their significance and role can be understood 

through a special case: the hypergeometric 

series 2F1 is directly related to the Legendre 

Polynomial and when used in the form of spherical 

harmonics, it expresses, in a certain sense, the 

symmetry properties of the two-sphere or 

equivalently the rotations given by the Lie 

group SO(3) Concrete representations are 

analogous to the Clebsch-Gordan function. 

A number of hyper-geometric function 

[Jackson (1904)], [Exton (1983)] identities came 

into light in the nineteenth and twentieth century, 
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one classical list of such identities is Bailey's list. It 

is at present understood that there is plethora of 

such identities, and several algorithms are now 

known to generate and prove these identities. In a 

certain sense, the situation can be likened to using a 

computer to do addition and multiplication; the 

actual value of the resulting number is in a sense 

less significant than the various patterns that come 

out, and so it is with hypergeometric identities as 

well.M.E.H. Ismail’s contribution [Ismail et al. 

(1977)], [Ismail et al. (1986)]    for q theory is quite 

remarkable. He worked on q-Hermite polynomials, 

biorthogonal rational functions, q-beta integrals, 

Contiguous relations, basic hypergeometric 

functions, orthogonal polynomials and Quadratic 

birth and death processes and associated 

continuous dual Hahn polynomials. 

Among Indian researchers R. P. Agrawal 

[Agrawal (1967)], [Agrawal (1976)], [Agrawal 

(1981)] gave a lot to q function. He worked on 

fractional q derivative, q-integral, mock theta 

function, combinatorial analysis, extension of 

Meijer’s G Function, Pade approximants, continued 

fractions and generalized basic hypergeometric 

function with unconnected bases. W.A. Al-Salam 

and A. Verma [Al-Salam et al.(1972)] worked on 

quadratic transformations of basic series. N. A. 

Bhagirathi [Bhagirathi (1988)] worked on 

generalized q hypergeometric function and 

continued fractions. V. K. Jain and M. Verma [Jain 

et al. (1980)] worked on transformations of non 

termating basic hypergeometric series, their 

contour integrals and applications to Rogers 

Ramanujan’s identities. 

S.N. Singh [Singh (1987)] worked on 

transformation of abnormal basic hypergeometric 

functions, partial theorems, continued fraction and 

certain summation formulae. K.N. Srivastava and 

B.R. Bhonsle worked on orthogonal polynomials. 

H.M. Srivastava with Karlsson [Srivastava et al. 

(1985)] worked on multiple Gaussians 

Hypergeometric series, polynomial expansion for 

functions of several variables. S. Ramanujan in his 

last days worked on basic hypergeometric series. 

G.E. Andrews published an article “The Lost Note 

Book of Ramanujan”. 

H.S. Shukla [Shukla (1993)] worked on 

certain transformation in the field of basic 

hypergeometric function. A. Verma and V.K. Jain 

worked on summation formulas of q-

hypergeometric series, summation formulae for 

non-terminating basic hypergeometric series in, q 

analogue of a transformation of Whipple and 

transformations between basic hypergeometric 

series on different bases and identities of Rogers-

Ramanujan Type. B.D. Sears [Sears (1951)] 

worked on transformation theory of basic 

hypergeometric function. P. Rastogi [Rastogi 

(1984)] worked on identities of Rogers Ramanujan 

type. A.Verma and M. Upadhyay [Verma et al. 

(1968)] worked on transformations of product of 

basic bilateral series and its transformations.  

In the field of combinatorics [Jackson 

(1904)], [Exton (1983)] and special functions, a q-

analogue is a simplification involving a new 

parameter q that returns the novel theorem, identity 

or expression in the limit as q → 1 (this limit is 

often formal, as q is often discrete-valued). 

Mathematicians are engrossed in q-analogues that 

occur naturally, rather than in randomly 

contriving q-analogues of predictable results. The 

primary q-analogue studied in detail is the basic 

hypergeometric series, which was introduced in the 

nineteenth century. M.A. Pathan [Pathan et al. 

(1979)] worked on bilateral generating functions 

for extended Jacobi polynomials. R.P. Singhal 

[Singhal et al. (1972)] worked on transformation 

formulae for modified Kampe de Ferieet function. 

M.V. Subbarao [Subbarao (1985)] worked on some 

Rogers-Ramanujan type partition theorem. C. 

Adiga and P.S. Guruprasa [Adiga et al. (2008)] 

worked on three variable reciprocity theorems. 

q-analogues find applications [Jackson 

(1904)], [Exton (1983)]  in a number of areas, 

including the study of fractals and multi-fractal 

measures, and expressions for the entropy of 

chaotic dynamical systems. The liaison to fractals 

and dynamical systems results from the fact that 

many fractal patterns have the symmetries 

of Fuchsian groups in general (e.g.  Indra's 

pearls and the Apollonian gasket) and the modular 

group in particular. The connection passes 

through hyperbolic geometry and ergodic theory, 

where the elliptic integrals and modular forms play 

a prominent role; the q-series themselves are 

closely related to elliptic integrals. q-analogues also 

came into sight in the study of quantum groups and 

in q-deformed super algebras. The connection here 

is alike, in that much of string theory is set in the 

language of Riemann surfaces, ensuing in 

connections to elliptic curves, which in turn relate 

to q-series. 

 q method has a very broad spectrum. It is 

used in fields like solid state theory, mechanical 

engineering, operational calculus, quantum theory, 

cosmology, Lie theory, linear algebra, high energy 

particles physics, Fourier Analysis, elliptic 

functions etc.  

 

 

III. YEAR WISE DESCRIPTION 
Year wise description of work done by various researchers is listed in the table given below. 
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AUTHOR TITLE NAME OF JOURNAL 

E. Heine (1847) Untersuchungenober die Reiche J. Reine Angew J. Math. 

C.F. Gauss (1866) Hundest 

TheoremeuberdieneuenTransscendenten 

Werke, Vol. 3, Gottingen 

L.J. Rogers (1893) On the expansion of some infinite 

products 

Proceedings of the London 

Mathematical Society 

L.J. Rogers (1894) Second memoir on the expansion of 

certain infinite products. 

Proceedings of the London 

Mathematical Society 

F.H. Jackson (1904) On generalized functions of Legendre and 

Bessel 

Trans. Roy. Soc. Edinburgh 

Math 

F.H. Jackson (1904) A generalization of the Function (n) and 

x
n
 

Proc: Roy. Soc. London 

F.H. Jackson (1910) Transformations of q-series Trans. Roy. Soc. Edinburgh 

Math 

F.H. Jackson (1910) On q-definite integrals Quart. J. Pure. and Appl. Math. 

F.H. Jackson (1921) Summation of q-hypergeometric series Messenger of Math 

G.N. Watson (1929) A new proof of Rogers-Ramanujan 

identities 

J. London Math. Soc. 

W.N. Bailey (1935) Generalized Hypergeometric 

Series.Cambridge Tracts  in  

Mathematics and Mathematical Physics 

Cambridge University Press 

W.N. Bailey (1938) The generating function of Jacobi 

polynomials. 

Journal of the London 

Mathematical Society 

W. Hahn (1949) Uber Orthogonal polynome, die q-

Differenzengleichungen gen¨ ugen.¨ 

Mathematische Nachrichten 

L.J. Slater (1951) Further identities of the Roger- 

Ramanujan type 

Proce. London Math. Soc 

L. Carlitz (1957) A note on the Bessel polynomials. Duke Mathematical Journal 

L. Carlitz (1957) Some arithmetic properties of the 

Legendre polynomials. 

Proceedings of theCambridge 

Philosophical Society 

E.D.Rainville (1960) Special functions. The Macmillan Company, New 

York 

L. Carlitz (1960) A note on the Laguerre polynomials. The Michigan Mathematical 

Journal 

L. Carlitz (1961) On the product of two Laguerre 

polynomials 

Journal of the London 

Mathematical Society 

L. Carlitz (1961) Some generating functions of Weisner. Duke Mathematical Journal 

L. Carlitz (1962) A characterization of the Laguerre 

polynomials. 

Monatshefte fur Mathematik 

W.A.Al-Salam 

(1964) 

Operational representations for the 

Laguerre and other polynomials 

Duke Mathematical Journal 

W.A. Al-Salam et al. 

(1964) 

Some orthogonal q-polynomials MathematischeNachrichten 

M.E.H.Ismail (1966) Relativistic orthogonal polynomials are 

Jacobi polynomials 

Journal of Physics A. 

Mathematical and General 

L.J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press 

L.J. Slater (1966) Generalized hypergeometic functions Cambridge University Press, 

London 

R. Askey (1967) Product of ultraspherical polynomials The American Mathematical 

Monthly 

L. Carlitz (1967) The generating function for the Jacobi 

polynomial. ` 

Rendiconti del 

SeminarioMatematicodellaUniv

ersita di Padova 

 Agarwal et al.   Generalized basic hypergeometric with Proc. Cambridge, Phil. Soc 
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(1967) unconnected bases 

Agarwal et al.(1967) Generalized basic hypergeometric 

functions with unconnected bases 

Quart. J. Math. (Oxford) 

R. Askey (1968) Dual equations and classical orthogonal 

polynomials 

Journal of  Mathematical 

Analysis and Applications 

T.S. Chihara (1968) On indeterminate Hamburger moment 

problems. 

Pacific Journal of Mathematics 

T.S. Chihara (1968) Orthogonal polynomials with Brenke type 

generating functions 

Duke Mathematical Journal 

L. Carlitz (1968) Some generating functions for Laguerre 

polynomials. 

Duke Mathematical Journal 

Verma et al. (1968) Certain transformations of product of  

basic bilateral hypergeometric series 

India J. Math. 

Askey et al.(1969) Integral representations for Jacobi 

polynomials and some applications 

Journal of Mathematical 

Analysis and Applications 

 Askey et al. (1969) A convolution structure for Jacobi series American Journal of  

Mathematics 

H.M.Srivastava 

(1969) 

A note on certain dual series equations 

involving Laguerre polynomials. 

Pacific Journal of Mathematics 

H.M.Srivastava 

(1969) 

Generating  functions for Jacobi and 

Laguerre polynomials 

Proceedings of the American 

Mathematical Society 

G. Gasper (1969) Nonnegative sums of cosine, ultra 

spherical and Jacobi polynomials. 

Journal of Mathematical 

Analysis and Applications 

R.P. Agarwal (1969) Certain fractional q-integrals and q-

derivatives 

proc. Camb. Phil. Soc. 

R. Askey (1970) An inequality for the classical 

polynomials 

Indagationes Mathematicae 

H.M.Srivastava 

(1970) 

Dual series relations involving 

generalized Laguerre polynomials. 

Journal of Mathematical 

Analysis and Applications 

G. Gasper (1970) Linearization of the product of Jacobi 

polynomials I. 

Canadian Journal of 

Mathematics 

G. Gasper (1970) Linearization of the product of Jacobi 

polynomials II. 

Canadian Journal of 

Mathematics 

Askey et al.(1971) Jacobi polynomial expansions of Jacobi 

polynomials with non negative 

coefficients 

Proceedings of the Cambridge 

Philosophical Society 

 Askey et al.(1971) Linearization of the product of Jacobi 

polynomials 

Canadian Journal of 

Mathematics 

G. Gasper (1971) On the extension of Turan’s inequality to 

Jacobi polynomials. 

Duke Mathematical Journal 

G. Gasper (1971) Positivity and the convolution structure 

for Jacobi series. 

Annals of Mathematics 

R. Askey (1972) Positive Jacobi polynomial sums The Tohoku Mathematical 

Journal 

 Al-Salam 

et al.(1972) 

Another characterization of the classical 

orthogonal polynomials 

SIAM Journal of Mathematical 

Analysis 

G. Gasper (1972) An inequality of Turan type for Jacobi 

polynomials. 

Proceedings of the American 

Mathematical Society 

G. Gasper (1972) Banach algebras for Jacobi series and 

positivity of a kernel. 

Annals of Mathematics 

R. Askey (1973) Summability of Jacobi series Transactions of the American 

Mathematical Society 

Srivastava et al. 

(1973) 

New generating functions for Jacobi and 

related polynomials 

Journal of Mathematical 

Analysis and Applications 
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G. Gasper (1973) Non negativity of a discrete Poisson 

kernel for the Hahn polynomials. 

Journal of Mathematical 

Analysis and Applications 

G. Gasper (1973) On two conjectures of Askey concerning 

normalized Hankel determinants for the 

classical polynomials. 

SIAM Journal on Mathematical 

Analysis 

R. Askey (1974) Jacobi polynomials I. New proofs of 

Koornwinder’s Laplace type integral 

representation and Bateman’s bilinear 

sum 

SIAM Journal on Mathematical 

Analysis 

M.E.H.Ismail (1974) On obtaining generating functions of 

Boas and Buck type for orthogonal 

polynomials 

SIAM Journal on Mathematical 

Analysis 

G. Gasper (1974) Projection formulas for orthogonal 

polynomials of a discrete variable. 

Journal of Mathematical 

Analysis and Applications 

M. Rahman (1976) Construction of a family of positive 

kernels from Jacobi polynomials 

SIAM Journal on Mathematical 

Analysis 

M. Rahman (1976) A five-parameter family of positive 

kernels from Jacobi polynomials 

SIAM Journal on Mathematical 

Analysis 

M. Rahman (1976) Some positive kernels and bilinear sums 

for Hahn polynomials 

SIAM Journal on Mathematical 

Analysis 

 Askey et al.(1976) Positive Jacobi polynomial sums American Journal of 

Mathematics 

Askey et al. (1976) Permutation problems and special 

functions 

Canadian Journal of 

Mathematics 

Al-Salam et al. 

(1976) 

Convolutions of orthonormal polynomials SIAM Journal of Mathematical 

Analysis 

 Al-Salam et 

al.(1976) 

Polynomials orthogonal with respect to 

discrete convolution 

Journal of Mathematical 

Analysis and Applications 

R.P.Agarwal (1976) Fractional q-derivative and q-integrals 

and certain hypergeometric 

transformation 

Ganita 

M. Rahman (1977) On a generalization of the Poisson kernel 

for Jacobi polynomials 

SIAM  Journal on 

Mathematical Analysis 

Askey et al.(1977) Convolution structures for Laguerre 

polynomials 

Journald’Analyse 

Mathematique´ 

 Al-Salam et al. 

(1977) 

Reproducing kernels for q-Jacobi 

polynomials 

Proceedings of the American 

Mathematical Society 

M.E.H.Ismail (1977) Connection  relations and bilinear 

formulas for the classical orthogonal 

polynomials 

Journal of Mathematical 

Analysis and Applications 

G. Gasper (1977) Positive sums of the classical orthogonal 

polynomials. 

SIAM Journal on Mathematical 

Analysis 

H. Exton (1977) Basic Laguerre polynomials. Pure and Applied Mathematika 

Sciences 

M. Rahman (1978) A generalization of Gasper’s kernel for 

Hahn polynomials: application to 

Pollaczek  polynomials 

Canadian Journal of 

Mathematics 

M. Rahman (1978) A positive kernel for Hahn-Eberlein 

polynomials 

SIAM  Journal on 

Mathematical Analysis 

R. Askey (1978) Jacobi’s generating function for Jacobi 

polynomials 

Proceedings of the 

AmericanMathematical Society 

 Askey et al. (1978) Weighted permutation problems and 

Laguerre polynomials 

Journal of Combinatorial 

Theory 

C.F. Dunkl (1978) An addition theorem for some q-Hahn 

polynomials. 

Monatshefte fur Mathematik 
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T.S. Chihara (1978) An introduction to orthogonal 

polynomials. 

Gordon and Breach, New York 

M. Rahman (1979) An elementary proof of Dunkl’s addition 

theorem for Krawtchouk  polynomials 

SIAM  Journal on 

Mathematical Analysis 

 Askey et al.(1979) A set of orthogonal polynomials that 

generalize the Racah coefficients or 6 − j 

symbols 

SIAM Journal on Mathematical 

Analysis 

T.S. Chihara (1979) On generalized Stieltjes-Wigert and 

related orthogonal polynomials. 

Journal of Computational and 

Applied Mathematics 

M. Rahman (1980) A product formula and a non-negative 

Poisson kernel for Racah-Wilson 

polynomials 

Canadian Journal of 

Mathematics 

D. Stanton (1980) A short proof of a generating function for 

Jacobi polynomials. 

Proceedings of the American 

Mathematical Society 

D. Stanton (1980) Product formulas for q-Hahn 

polynomials. 

SIAM Journal on Mathematical 

Analysis 

D. Stanton (1980) Some q-Krawtchouk polynomials on 

Chevalley groups. 

American Journal of 

Mathematics 

J.A. Wilson (1980) Some hypergeometric orthogonal 

polynomials. 

SIAM Journal on Mathematical 

Analysis 

 Stanton et  al. 

(1980) 

A short proof of a generating function for 

Jacobi polynomials. 

Proceedings ofthe American 

Mathematical Society 

Stanton et al.(1980) Product formulas for q-Hahn 

polynomials. 

SIAM Journal on Mathematical 

Analysis 

Stanton et al. (1980) Some q-Krawtchouk polynomials on 

Chevalley groups. 

American Journal of 

Mathematics 

Verma et al. (1980) Some summation formulae of Basic 

hypergeometric series 

Indian J. of Pure and applied 

Math. 

Verma et al.(1980) Transformations between basic 

hypergeometric series on different bases 

and Identities of Rogers-Ramanujan Type 

J. of Mathematical Analysis 

and applications 

M. Rahman (1981) A non-negative representation of the 

linearization coefficients of the product of 

Jacobi  polynomials 

Canadian Journal of 

Mathematics 

M. Rahman (1981) A stochastic matrix and bilinear sums for 

Racah-Wilson polynomials 

SIAM Journal on Mathematical 

Analysis 

M. Rahman (1981) Families of biorthogonal rational 

functions in a discrete variable 

SIAM Journal on Mathematical 

Analysis 

M. Rahman (1981) The linearization of the product of 

continuous q-Jacobi polynomials 

Canadian Journal of 

Mathematics 

R.P. Agarwal (1981) A Family of basic hypergeometric and 

Combinatorial identities and certain 

summation formulae 

Indian J. pure. Appl. Math 

Verma et al. (1981) Transfomations of product of basic 

bilateral series 

Proc. Nat Inst. Sc. 

M. Rahman (1982) Reproducing kernels and bilinear sums 

for q-Racah and q-Wilson polynomials 

Transactions of the American 

Mathematical Society 

 Askey et al. (1982) The Rogers q-ultraspherical polynomials In: Approximation Theory III, 

Academic Press, New York 

 Askey et al.(1982) A set of hypergeometric orthogonal 

polynomials 

SIAM Journalon Mathematical 

Analysis 

Al-Salam et 

al.(1982) 

On an orthogonal polynomial set IndagationesMathematicae 

Al-Salam et 

al.(1982) 

Some remarks on q-beta integral Proceedings of the American 

Mathematical Society 
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IV. CONCLUSIONS AND FUTURE 

WORK 
q method has very broad spectrum of 

applications. It is used in fields like solid state 

theory,  mechanical engineering, operational 

calculus, quantum theory, cosmology, Lie theory, 

linear algebra, high energy particles physics, 

Fourier Analysis, elliptic functions etc. 

Some of the fields where it has a wide scope are 

listed below. 

1. Numerical solutions to differential equations 

for boundary value analysis 

2. Finite Difference Method 

3. Computational Fluid Dynamics (Navier–

Stokes Equations) 

4. Dynamics (Newton-Euler & Lagrange’s 

equations) 

5. Finite Element Method 

6. Solid Mechanics (Elasticity equations) 

7. Heat Transfer (Heat equation) 

8. Kinematics Simulation 

9. Complex System Optimization 

10. DNA Analysis 

11. Computer Graphics Theory 

12. Finger Print Verification 

13. Signal Processing 

14. Air Craft Designing 
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