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ABSTRACT. In this paper, we consider two new constraint preconditioners for generalized saddle point
problems. The eigenvalue distribution of the related preconditioned matrix is discussed in detail. Theoretical
analysis shows that all the eigenvalues of the preconditioned matrix are strongly clustered.
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I. INTRODUCTION
We consider the generalized saddle point problems
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where n nA ×∈ , , m nB C ×∈ , .m n≤ In this paper, we always assume that A in (1) is nonsingular and the
matrix A is singular with high nullity, i.e., the solution of the generalized saddle point problems (1) exists and
is unique. That is, the generalized saddle point problems (1) is important and appears in many different
applications of scientific computing, one can see [1] for a comprehensive survey.
Recently, a great deal of effort has been invested in solving the generalized saddle point problems. Most of the
work has been aimed at developing some effective preconditioning techniques for generalized saddle point
problems. In general, there at least exist five classes of preconditioners to improve the convergence rate of
Krylov subspace methods for solving generalized saddle point problems：diagonal preconditioner, triangular
preconditioner, constraint preconditoner, HSS preconditioner, shift-preconditioner, see [1-6].
In this paper, two new constraint preconditioners for the generalized saddle point problems are presented and

the eigenvalue distribution of the preconditioned matrices is given. If the nullity of the (1,1) block in A of the
generalized saddle point problems (1) takes its highest possible value, then some precisely distinct eigenvalues
of the preconditioned matrix can be obtained.
1. Preconditioners and Spectrum Analysis
To conveniently discuss the block triangular preconditioners for solving (1), without further illustration, we

always assume that A is nonsingular. From [2,3], the following two lemmas are required.
Lemma 2.1 The nonsymmetric coefficient matrix
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is nonsingular if and only if the following conditions are satisfied:
{ } { }( ) ( ) , ( ) ( ) 0 ( ) ( ) 0Trank B rank C m A C and A B= = Ν ∩ Ν =   Ν ∩ Ν = ,

where ( )Ν ⋅ denotes the null space of a matrix.

Lemma 2.2 The nonsymmetric coefficient matrix
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is nonsingular, then the rank of the matrix A is at least n m− , and hence its nullity is at most m .
Next, the following two augmentation block constraint preconditioners are considered
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where m mW ×∈ is nonsingular and such that 1TA B W C−+ is nonsingular.
The following theorem provides the spectrum results of the preconditioned matrix 1P−

− A .

Theorem 2.1 Assume that A is nonsingular and the matrix A is singular with nullity s . Then 1λ = is an
eigenvalue of 1P−

− A of geometric multiplicity n m− , and 1 2λ = is an eigenvalue of geometric

multiplicity s . The remaining 2m s− eigenvalues satisfy
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+ ±
=

where μ are some 2m s− generalized eigenvalues of the generalized eigenvalues problem
1 .TB W Cx Axμ− = (2)
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a basis of ( )AΝ . Then the vectors ,0 ,
TT T

iz⎡ ⎤⎣ ⎦
1, , ,i n m= − are linearly independent eigenvectors associated with 1λ = , and the vectors

1, ( )
TT T

i ix W Cx−⎡ ⎤−⎣ ⎦ ( 1, , )i s= are linearly independent eigenvectors associated with 1 2λ = .

Proof. Let λ be an eigenvalue of 1P−
− A and ,

TT Tu v⎡ ⎤⎣ ⎦ be the corresponding eigenvector. Then
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1( ) 3T T TAu B v A B W C u B vλ λ−+ = + + (3)
Cu Cu Wvλ λ  = − (4)

As A is nonsingular, 0λ ≠ . From (4), we can get that

11v W Cuλ
λ

−−
  = . (5)

Substituting (5) into (3), we get
1 1 11 1( ) 3T T TAu B W Cu A B W C u B W Cuλ λλ λ

λ λ
− − −− −

+ = + + ⋅ .

By simple computations, we obtain that
2 1(1 ) (4 4 1) .TAu B W Cuλ λ λ λ −− = − + (6)

If ( )u C∈ Ν , then (6) implies that
(1 ) 0.Auλ λ− =

Further, we can get that 1λ = and ,0
TT Tu⎡ ⎤⎣ ⎦ is its eigenvector. Thus, if { } 1

n m
i i

z −

=
is a basis of ( )CΝ , then the

vectors ,0 ,
TT T

iz⎡ ⎤⎣ ⎦ 1, , ,i n m= − are linearly independent eigenvetors associated with the eigenvalue

1λ = .
If ( )u A∈ Ν , then (6) implies that
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from which we obtain that 1 2λ = and 1, ( )
TT Tu W Cu−⎡ ⎤−⎣ ⎦ are the eigenvetors. Thus, let { } 1
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be a basis of

( )AΝ , then the vectors 1, ( ) ,
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i ix W Cx−⎡ ⎤−⎣ ⎦ 1, , ,i s= are linearly independent eigenvetors associated

with the eigenvalue 1 2λ = .
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If ( )u A∉ Ν and ( )u C∉ Ν , based on (2) and (6), we get
2(1 ) (4 4 1)λ λ λ λ μ− = − +

or
2(4 1) (4 1) 0.μ λ μ λ μ+ − + + =

Therefore,
4 1 1,
2

μ
λ

+ ±
=

which completes the proof. □
Theorem 2.1 shows that the higher the nullity of A is, the stronger the eigenvalues of 1P−

− A are clustered.
When the nullity of A is m , its at most value from Lemma 2.2, we have the following result.

Corollary 2.1 Assume that A is nonsingular and that its (1,1) block A is singular with nullity m . Then
1λ = is an eigenvalue of 1P−

− A of geometric multiplicity n m− , and 1 2λ = is an eigenvalue of geometric
multiplicitym .
Based on the results in Corollary 2.1, we know that a preconditioned minimal residual Krylov iterative

method such as GMRES with the preconditionerP− converges with two iterations.

Similarly, we can obtain the following spectrum results of the preconditioned matrix 1P−
+ A

Theorem 2.2 Assume that A is nonsingular and the matrix A is singular with nullity s . Then 1λ = is an
eigenvalue of 1P−

+ A of geometric multiplicity n m− , and 1λ = − and 1/ 3λ = are two eigenvalues of

geometric multiplicity s . The remaining 2 2m s− eigenvalues satisfy
21 2 1 16

2(3 1)
μ μ
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− ± +
=

+
where μ are some 2 2m s− generalized eigenvalues of the generalized eigenvalues problem

1TB W Cx Axμ− = .
Corollary 2.2 Assume that A is nonsingular and the matrix block A is singular with nullity m . Then 1λ = is
an eigenvalue of 1P−

+ A of geometric multiplicity n m− , and 1λ = − and 1/ 3λ = are two eigenvalues of
geometric multiplicitym .
Based on the results in Corollary 2.2, we know that a preconditioned minimal residual Krylov iterative

method such as GMRES with the preconditionerP+ converges with three iterations.

II. CONCLUSIONS
In this paper, two new constraint preconditioners for generalized saddle point problem are presented and the

spectrum distribution of corresponding preconditioned matrices are discussed. Theoretical analysis shows that
the eigenvalues of the preconditioned matrix 1P−

− A are 1 and 1 2 when the matrix block A in A is singular

with nullitym , the eigenvalues of the preconditioned matrix 1P−
+ A are 1 , 1− and1/ 3 when the matrix block

A in A is singular with nullitym .
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